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Lack of re-entrance in certain Ising spin-glass models 

J D Regert and A P Young 
Physics Department, University of California, Santa Cruz, C A  95064, USA 

Received 10 August 1988 

Abstract. We report results of numerical transfer matrix calculations on a dilute two- 
dimensional first- and second-neighbour Ising model and Migdal-Kadanoff renormalisation 
group studies on a random nearest-neighbour king model in two and three dimensions. The 
calculations were carried out to examine the existence of re-entrance in these systems, 
defined by the disappearance of long-range ferromagnetic order upon lowering the 
temperature. We find, contrary to other claims in the literature, that there is no re-entrance 
in these models or ,  at best, re-entrance occurs over a very narrow range of parameters, and 
speculate about the necesary ingredients to obtain re-entrance in random spin systems. 

1. Introduction 

In many spin-glass systems there is a range of concentration of the atomic species where, 
upon lowering the temperature, the successive phases are paramagnetic, ferromagnetic 
and spin glass (Binder and Young 1986, Maletta and Zinn 1986). Such systems are called 
re-entrant spin glasses. The terminology is somewhat inaccurate, since the system does 
not re-enter a spin-glass state at low temperatures, as it was a paramagnet, not a spin 
glass, at high temperatures, but it does, however, re-enter a less ordered state. This 
succession of phases implies that the re-entrant spin-glass phase has the lowest energy, 
while the ferromagnetic phase has more entropy, which is intuitively rather surprising. 

Re-entrance, or reappearing phases, have been observed in a variety of systems that 
undergo some kind of phase transition. A very simple example is seen in binary liquid 
mixtures (Walker and Vause 1980, 1987), while other examples include super- 
conductivity (Lin et a1 1984), and liquid crystals (Indekeu and Berker 1986). The usual 
mechanism responsible for re-entrant behaviour is the existence of some hidden inter- 
action that is capable of lowering the entropy of the system while reducing its energy. 
No such interaction, or other mechanism, has been identified in spin glasses as yet. 

Re-entrance has been found in a wide variety of spin glasses: insulating as well as 
metallic, and both crystalline and amorphous alloys (Maletta and Zinn 1986, Aeppli et 
a1 1983, 1984a, b, Wong et a1 1985a, b, 1987). The interpretation of the experimental 
findings, in particular the nature of the low-temperature phase is, however, still a subject 
of controversy (Maletta and Zinn 1986, Coles 1984). One well studied example is the 
insulator Eu,Srl - x S ,  which is known (Maletta and Felsch 1979, Binder et a1 1979, Kinzel 
and Binder 1981) to be a text-book example of a Heisenberg system. It can be modeled 
successfully by a Heisenberg magnet on an FCC lattice that has a first-neighbour ferro- 
magnetic coupling (I1) and antiferromagnetic second-neighbour interaction ( I 2 )  of 
t Present address: Institut fur Physik, Johannes-Guttenberg-Universitat, Postfach 3980, D-6500 Mainz, FRG.  

0953-8984/89/050915 + 14 $02.50 @ 1989 I O P  Publishing Ltd 915 



916 J D Reger and A P Young 

smaller magnitude, where, to agood approximation, 0 < J , / 2  = - Iz .  This system shows 
re-entrant ferromagnetic behaviour in the concentration range of the magnetic species 
0.51 d x d 0.65. 

Most of the systems in which re-entrance has been studied are Heisenberg 
ferromagnets. However, there have also been measurements on the Heisenberg anti- 
ferromagnet Eu,Srl -,Te (Borgermann et a1 1987) and the Ising antiferromagnet 
Fe,Mgl (Wong et a1 1985a, b, 1987). Unfortunately though, no Ising ferromagnetic 
systems have been studied to our knowledge. Eu,Srl -,Te is a diluted Heisenberg system 
with dominating antiferromagnetic interactions, for which experiments find a spin-glass 
regime in the concentration range 0.15 < x < 0.5. There is no indication of re-entrance, 
neither from irreversibility effects, nor from the AC susceptibility results. Unfortunately, 
no neutron scattering experiments have been done as yet (Borgermann et a1 1987). 
Fel -.MgxC1 is a diluted Ising antiferromagnet with competing first- and second-neigh- 
bour interactions. The lower transition occurs at T = 3 K for x 0.45, as found by AC 
susceptibility measurements. Neutron diffraction experiments. however, reveal that 
long-range antiferromagnetic order and spin-glass-like short-range order coexist in this 
phase (Wong et a1 1985a, b, 1987). Thus this system is not re-entrant according to our 
definition. To sum up the experimental findings: true re-entrance has been found in 
Heisenberg ferromagnetic systems only. Heisenberg antiferromagnets do not show true 
re-entrant behaviour, neither do Ising antiferromagnetic systems. 

The experimental discovery of re-entrance did not come as a surprise, since the early 
mean-field theory of king spin-glass models (Sherrington and Kirkpatrick 1975) did 
show this behaviour. It was only later, when the theory of Parisi (1979, 1980a, b. c) 
appeared, that it became apparent that re-entrance does not occur (Toulouse 1980) in 
the correct mean field theory of spin glasses. 

There have been a number of reports in the literature recently (Katsura and Matsuno 
1983, Wolff and Zittartz 1985,1986, Benayad et al1987) that claim to provide either a 
rather simple explanation of re-entrant behaviour or claim to demonstrate that re- 
entrance occurs very generally in short-range disordered systems, in particular in certain 
simple random Ising models with short-range interactions. Motivated by these claims 
we have carried out careful studies of these models and find, by contrast, that they do 
not exhibit re-entrance. Nonetheless we believe that our results are compatible with 
experimental findings, since the one Ising system studied, Fe, -xMg,C12, does not show 
re-entrance either. We suspect that one must have Heisenberg spins and/or include 
long-range interactions such as dipole-dipole couplings, to obtain re-entrant behaviour. 

2. Theoretical models 

The effect of the different concentrations of the atomic species can be mimicked in 
theoretical models by changing the ratio of the mean to the standard deviation of the 
distribution of interactions. The behaviour of such models is well understood only for 
the case of infinite range interactions. For these models with king spins, if this ratio is 
such that ferromagnetic ordering occurs as the temperature is lowered, then this long- 
range order is never lost as the temperatuie is further decreased. The mean-field phase 
diagram, obtained (Parisi l979,1980a, b, c) from the exact solution of the infinite range 
Sherrington-Kirkpatrick (1975) model, is shown in figure l ( a ) .  Spin-glass behaviour 
does set in at low temperatures, but it coexists with the ferromagnetic long-range order. 
There is a ‘mixed’ phase with ferromagnetism and replica symmetry breaking (i.e. 
irreversibility) separated from the true ferromagnetic phase (replica symmetric, no 
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Figure 1. Infinite-range model phase diagrams: The mean-field transition temperatures are 
plotted against the ratio of the mean and the standard deviation of the bond distribution. 
The phases are: PM, paramagnetic; FM, ferromagnetic; M ,  mixed; and sG, spin glass. The SG 
FM phase boundary is vertical. (a) king spins. The shaded curve, known as the AT line. 
separates the mixed phase, which has both ferromagnetic ordering and replica symmetry 
breaking (irreversibility), from the FM phase, which has no replica symmetry breaking. ( b )  
Heisenberg spins. The shaded curve, known as the GT line, separates the mixed phase, 
which has ferromagnetism coexisting with transverse spin-glass order, from the purely 
ferromagnetic phase. 

irreversibility) by the Almeida-Thouless (AT) line (de Almeida and Thouless 1978). 
Ironically, the earlier Sherrington-Kirkpatrick (SK) theory (Sherrington and Kirkpatrick 
1975) did show re-entrance. However, the replica symmetric solution turned out to be 
unstable below the ATline, and the presumably exact Parisi (l979,1980a, b, c) solution 
gives a vertical spin-glass-ferromagnet (SG-FM) phase boundary (Toulouse 1980). Thus 
we see that the results of the measurements on the antiferromagnetic Ising system 
Fel -xMg,C12 are in qualitative agreement with the predictions of the mean-field theory. 

For Heisenberg spins the situation in mean-field theory is very similar, except that 
transuerse spin-glass order also sets in at lower temperatures (Gabay and Toulouse 
1981). The phase diagram is shown in figure l(b).  There is again a mixed phase, where 
ferromagnetic long-range order coexists in this case with transverse spin-glass order. 
This is separated from the true ferromagnetic phase by the Gabay-Toulouse (GT) line 
below which replica symmetry breaking occurs. But the SG-FM phase boundary is 
vertical, just as in the Ising case. Thus there is no re-entrance in non-diluted infinite 
range models of spin glasses. 

Recently a generalised diluteinfinite range Ising spin-glass model has been introduced 
and studied (Viana and Bray 1985). The model is used to represent Eu,Srl - ,S, by taking 
ferromagnetic bonds with probability 2/3 and antiferromagnetic ones with probability 
1/3 and half strength. Apart from the paramagnetic (PM), ferromagnetic (FM) and spin- 
glass (SG) phases, a mixed phase is found, but the phase boundary between the s~ and 
FM phases can be re-entrant, depending upon the parameters of the model. 

Short-range models of spin glasses are less well studied and understood. For simplicity 
most of the studies of re-entrance have been done on Ising models. Results are available 
in the annealed approximation, where the disorder degrees of freedom are allowed to 
reach equilibrium with the rest of the system (Thorpe and Beeman 1976, Falk 1976). 
Although expected to be quite accurate at high temperatures and small disorder, the 
annealed approximation is somewhat irrelevant for spin-glass systems: there can be no 
spin-glass phase, since for spin glasses the disorder certainly has to be frozen on the time 
scales of experiments. At  low temperatures the relaxation of disorder in the annealed 
approximation builds up strong correlation between the bonds in order to reduce the 
frustration in the system. For this reason one cannot expect to get meaningful answers 
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at low temperatures where re-entrance occurs, if at all. In fact, the annealed treatment 
does give re-entrance for a first-neighbour Ising model with ferromagnetic and anti- 
ferromagnetic interactions of different strengths but we believe that this is incorrect for 
the case of the quenched disorder, as discussed in Q 4. 

In this paper we study Ising systems whose Hamiltonian can be written 

H = - J,jSiS, (1) 
Lj) 

where S, = i 1, i and j  denote sites on a square or simple cubic lattice and the interaction 
strengths J0 are random variables. A simple example, which is generally agreed not to 
have re-entrance, is the first-neighbour model with bonds of equal strength (LJmodel), 
for which 

As the fraction of ferromagnetic bonds is lowered, the ferromagnetic critical temperature 
is decreased, and the phase transition is completely destroyed below a critical fraction, 
Independent of the existence of a SG phase, the FM phase boundary is expected to be 
vertical (Nishimori 1986, Nemeth 1987). The approximate phase diagram has been 
obtained in both d = 2 and d = 3 by high-temperature series expansions (Reger and 
Zippelius 1985, 1986), as well as by Monte Carlo renormalisation group calculations 
(Ozeki and Nishimori 1987). Earlier results for the d = 2 case were obtained by standard 
Monte Carlo simulations (Morgenstern and Binder 1980). 

A variant of the kJ model, where the positive and negative bonds have a different 
magnitude as well as a different fraction, has been investigated by Wolff and Zittartz 
(1985, 1986). The probability distribution takes the form 

This is one of the models that we will study extensively. 
Since the generic re-entrant system, Eu,Srl -$, has second-neighbour interactions, 

we also studied a very simple model that mimics many of its properties. A significant 
difference is that it is an Ising model, whereas the Eu,Srl -,S system is known to be well 
modelled by Heisenberg spins (Binder et af 1979, Kinzel and Binder 1981). A further 
difference is the dimensionality of the lattice. Since we were unable to extend our 
calculations to reasonable system sizes on the three-dimensional FCC lattice, we studied 
the two-dimensional square lattice with first- and second-neighbour interactions, whose 
Hamiltonian is written (Binder et a1 1979, Kinzel and Binder 1981). 

P(Jj j )  =p6(Jjj  - J )  + (1 -p )6 ( J ,  + J ) .  ( 2 a )  

P(Jjj) =p6(J, - J) + (1 - p)6(Jjj + d). (2b) 

H =  -11 JU&i&,SiSj - J 2  & k & l S k S [  (2c) 
(U) ( (k .0)  

where (i, j )  denotes a sum over all first and ((k, 1)) over all second neighbours, J2 < 0 and 
= 1 or 0 denotes whether or not a spin is present on site i. As in Eu,Srl -xS the first- 

neighbour interactions are purely ferromagnetic (J1 > O), the second neighbour ones 
are purely antiferromagnetic (-J1/2 S J2 < 0) and we introduce dilution to model the 
presence of the randomly placed nonmagnetic atoms: only a fraction x, equal to the 
average of q, of the spins are present on the lattice. Note that J, and J2 are not random: 
disorder comes entirely from site dilution. We shall investigate the properties of this 
model extensively. 

3. Techniques 

Our goal has been to understand the physical basis of re-entrant spin glasses by studying 
which short-range models showed this behaviour and which did not. It is not easy, 
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Figure 2. Migdal-Kadanoff decimation clusters in 
d = 2andd = 3 Thetraceistakenovertheshaded 

d . 2  
spins. and gives a new effective interaction 
between the unshaded spins. d = 3  

however, to find a method for short-range systems which is free from crude approxi- 
mations that might incorrectly introduce re-entrance. In random systems it is difficult to 
use controlled analytical methods, but many numerical techniques, especially simu- 
lations, have been successfully used. Standard Monte Carlo simulations are not a suitable 
technique for the present problem, however, because re-entrant behaviour occurs, if at 
all, at very low temperatures, where relaxation times are enormously long, so the system 
does not reach equilibrium in any reasonable time. This is not only because of the low 
temperatures per se, but because the spin-glass phase has in addition anomalously long 
relaxation times. Consequently, we have chosen two other techniques that are suitable 
even at low temperatures. 

3.1. Migdal-Kadanoff renormalisation 

The Migdal-Kadanoff renormalisation-group transformation scheme has proved, 
despite its simplicity, to be a useful technique for investigations on spin glasses (Young 
and Stinchcombe 1976, Southern and Young 1977, Kirkpatrick 1977). It did indeed 
predict correctly that the lower critical dimension d,, in the short-range Ising spin-glass 
model is below 3. This result is now, after ten years of research, widely accepted (Binder 
and Young 1986). The method obviously has limitations, and is not expected to give 
very good estimates of the critical temperatures in spin glasses. It does seem to give, 
however, the right topology of the phase diagram. Consequently, we decided to examine 
the low-temperature behaviour of certain Ising spin-glass models to see whether they 
show re-entrant behaviour. The Migdal-Kadanoff scheme follows the evolution of the 
bond distribution under the renormalisation group iterations, and locates both the 
ferromagnetic and the spin-glass phases. Thus it is well suited to examine re-entrant 
behaviour. 

The Migdal-Kadanoff recursion relation for general dimension but fixed rescaling 
factor b = 2 is 

2d-1  2 d - 1  

PI:, = I ;  = 2 tanh-' (tanh PI,, tanh /.U,,) (3) 
/=1  / =  1 

where P denotes the inverse temperature (measured in units of Boltzmann's constant), 
d is the dimension of the lattice, the J s  represent the bonds, and the primes denote the 
new values obtained in the current iteration step (Migdall976, Kadanoff 1976, Southern 
and Young 1977). The corresponding clusters for d = 2 and d = 3 are shown in figure 2. 
To  iterate equation (3) numerically, one constructs a set of Nb bonds drawn inde- 
pendently from the desired initial distribution. One iteration step consists of computing 
a new set of Nb bonds by selecting 2d elements of the current set, and combining them 
according to equation (3) to give one new bond. This step is repeated Nb times to get a 
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lattice of the original size but with a new distribution of bonds (Southern and Young 
1977). 

At very low temperatures special care has to be taken with equation (3) since all 
hyperbolic tangent terms go rapidly to t 1, so precision is quickly lost. However in this 
limit equation (3) can be rewritten in the following form 

2d-I  2d- I  

which can be used every time the argument of tanh-' becomes too close to t 1. 
The various possible phases are located by following the behaviour of the bond 

distribution under the above iteration. Denoting the mean and the width byJo and AJ, 
they evolve as 

Jo - 0 AJ- 0 paramagnetic phase (5a) 
Jo  + X A J / J ~  -+ 0 ferromagnetic phase (5b) 
AJ- J ~ / A J -  o spin-glass phase (5c) 

3.2. Transfer matrix method 

Our second and main technique of investigation was the numerical transfer matrix 
method (Morgenstern and Binder 1980, Morgenstern 1983). It is a numerically exact 
technique, since it involves the computation of the full trace in the expression for partition 
function of the system, Z ( T ,  H ) ,  for a given configuration of bonds. In particular, it 
can be used to compute the partition function at very low temperatures, since it does not 
suffer from long relaxation times, and thus it is ideally suited for our purposes. 

In the original form the method was used for the case of small external fields and 
the quantity of interest was obtained by numerical differentiation of the free energy 
(Morgenstern and Binder 1980). However, we need two non-vanishing moments of the 
total magnetisation, ( M 2 )  and (M ' ) ,  which cannot be computed by numerical dif- 
ferentiation with sufficient precision. Hence a modification has been implemented, in 
which the first few terms of the Taylor expansion of Z( T ,  H )  with respect to a uniform 
external field H ,  are exactly computed (Saleur and Derrida 1985). They yield directly 
the cumulants of the magnetisation. 

Since all odd terms in H vanish exactly in a finite system, the following Taylor 
expansion holds for every configuration of bonds: 

where h = H/Tand the temperature is measured in units of the Boltzmann constant k g .  
The free energy is obtained from 

and has a Taylor expansion of the form 

Z = Z ( T ,  H )  = Z o ( T )  + h 2 Z 2 ( T )  + h 3 Z 4 ( T )  + . . . ( 6 )  

F ( T ,  H )  = - Tlog Z (T .  H )  (7) 

1 1 
2 !  4! F ( T , H )  = F o ( T )  +-h2F2(T)  + - h ' F , ( T ) + .  . . . 

By expanding equation (7) and comparing the result with equation (8) one finds 
Fo = - Tlog zo ( 9 a )  
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Since the odd moments of the magnetisation vanish (there is no spontaneous mag- 
netisation in a finite system), the first two non-vanishing cumulants are 

M 2  = (M2) and M4 = (M4) - 3(M2)2 (10) 
which are easily identified as 

Mz = - F,T and M4 = - F 4 / T .  
To detect the ferromagnetic phase transition, we use the renormalised coupling 

constant (Binder 1981): 

where the moments and the cumulants are calculated in a system of linear dimension L 
for a given bond configuration. In the paramagnetic phase ( T  > TF') g +  0 as N +  w, 

while in the ferromagnetic phase ( T  < TFM) g + 1 as A'--, x ,  and at the phase transition 
( T  = TF") g = g*, independent of system size. In other words, g ( T )  is a particularly 
convenient quantity to use in a finite size scaling analysis because curves of g( T )  against 
T for different sizes intersect at the transition temperature, which is therefore rather easy 
to locate. In a random system the free energy is obtained by averaging over different 
configurations of the randomness, i.e. the cumulants of the magnetisation are averaged 
(cf equations (8) and (11)). Hence it is meaningful to takeg( T )  as defined by the averaged 
cumulants, and locate the phase transition by finding g* from computing g(T) for 
different system sizes from 

where [ .  . .I,, denotes the configurational average. 
The transfer matrix technique for a two-dimensional model restricted to first-neigh- 

bour interactions is very straightforward (Morgenstern and Binder 1988, Morgenstern 
1983). The first step is to write the partition function of the system as a product of transfer 
matrices which connect the rows of the system and also contain the interactions within the 
rows. Consider a system of L rows by M columns, having periodic boundary conditions in 
the horizontal direction, and free boundary conditions in the vertical direction. The 
basic idea is to sum over the spins a row at a time. Firstly all the states of the first row are 
generated and their Boltzmann weights stored in a state vector of length 2L. Then the 
first spin of the second row, SZ1, is included. This would increase the number of weights 
to 2L+', were it not for the fact that at this point all spins connected to S,, by a bond have 
already been included. Thus the sum on this variable in Z(  T )  can be performed at once, 
keeping the number of weights to 2L, but having replaced SI, by SZ1. This summation 
involves the recalculation of all the weights by adding up the contributions to them from 
the states with Sll = -1 and Sll = +l.  

One then proceeds by including S22 and summing out S12. This is repeated from spin 
to spin and row to row. There is no need to store more than 2L weights at any one time, 
so storage requirements limit this method to L 6 20 on today's computers. There is no 
limitation on the number of rows, however. Instead of the 0 ( 2 L x M )  operations to 
evaluate the trace in the expression for Z( T ,  H ) ,  and O ( L  X M X 2L) operations have 
to be performed. This reduction is what makes the method computationally feasible. 
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For random systems, where a configurational average over many samples has to be 
taken, it is the computer time, and not the storage requirement, that limits the practical 
system size. 

The above procedure has to be modified if the model contains second-neighbour as 
well as first-neighbour interactions. On the square lattice the first spin in the first row Si, 
is connected to the second and last spins, S2, and S2L, on the next row, as well as to Sz,. 
Therefore we expand the state vector from the states of (SllS,, . . . SIL) to those of 
(S2LS21SllS12 . . SIL), by including the ‘ghost’ indices SzL and Szl. We then work with 
the 2L+2 weights, which specify the possible states of the spins in the first row and the 
first and the last spins in the second row. Just as before, we can now successively sum 
out and replace the spins of the first row since at any one point all spins connected to 
the one being summed out are already included. In other words, starting from the 
configuration (S2LS21SllS12 * S I L )  we replace Sll by S22 to get (S2LS2,S22S12. + . S j L ) .  
Then we replace SI, by S23 and continue in this way until the state is specified by 
(S2LS21S22 . . S2LS21). At  this point all spins of the first row have been summed out. The 
spins S,, and SZ1 appear twice as indices (‘ghosts’). To obtain the state of the second row 
we have to eliminate the ‘ghost’ states by retaining only those weights for which the two 
occurrences of the spins SZL and as indices have the same value. This reduces the 
number of weights by a factor of four and we obtain 2L weights again, specified by 

This extension slows down the computation by about a factor of five, as well as 
increasing the storage needed by a factor of four. It can still be vectorised using gather/ 
scatter routines (e.g. on a Cray X-MP), and we found that we could collect good statistics 
on system sizes up to 12 X 12 within reasonable computer time. 

(S21S22 . . * S2L).  

4. Results 

4.1. Migdal-Kadanoff renormalisation 

The re-entrant phase is easily detected upon convergence of the iteration scheme of 
equation (3) according to the classification of equation ( 5 ) .  We took typically lo4 bonds 
in a set and iterated until convergence occurred to one of the three possible phases. The 
phase diagram of the two-dimensional random bond Ising model with first-neighbour 
interactions and probability distribution given by equation (2b) is shown in figure 3. The 
ferromagnetic transition temperature is plotted against the fraction of the ferromagnetic 
bonds for different values of the strength of the negative bonds a. The phase diagram 
does not show re-entrance for any value of a. The phase boundary seems to be vertical 
at low temperatures, and there is a strong dependence of pFM(T = 0) on a. The small 
deviations from verticality at low temperatures are due to statistical errors in the method. 
We also carried out the same renormalisation at T = 0 exactly, using equation (4), 
since it is conceivable that the re-entrant behaviour occurs in this model at very low 
temperatures and rather abruptly. Figure 4 shows a plot of the critical curve in the p a  
plane at T = 0, which is the T--, 0 limit of the finite temperature plot in figure 3. It 
confirms the behaviour we expect from figure 3, i.e. pzM ( T  = 0) has strong dependence 
on a. We shall discuss this in some detail in § 5. 

As discussed in 8 3, it is trivial to extend these calculations to d = 3. We show the 
results in figure 5 .  As expected (Southern and Young 1977) we find three distinct phases: 
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Figure 3. Migdal-Kadanoff phase diagram in d = 
2for T > Oofthefirst-neighbourmodelwithbond 
probability distribution given by equation (2b).  
The transition temperature between the ferro- 
magnetic and paramagnetic phases is plotted 
against the fraction of the antiferromagnetic 
bonds for different values of a,  the 
antiferromagnetic bond strength. 

T: 

Figure 5. Migdal-Kadanoff phase diagram as in 
figure 3, but in d = 3. The transition temperatures 
between the ferromagnetic (lower left), para- 
magnetic (upper right) and spin-glass phases 
(lower right) are plotted against the fraction of 
the antiferromagnetic bonds for different values 
of a, the antiferromagnetic bond strength. 

a 
Figure 4. Migdal-Kadanoff phase diagram as in 
figure 3, but at T = 0. The critical fraction sepa- 
rating the ferromagnetic and paramagnetic 
phases is plotted against the antiferromagnetic 
bond strength. 
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paramagnetic and spin glass. While there is some suggestion of a very small region of re- 
entrance in the a = 0.7 results, this is hardly outside the statistical errors. In any case, 
we certainly do not obtain re-entrance for the rather large range of concentration 
observed experimentally. 

4.2. Transfer matrix method 

The critical temperature of the re-entrant phase is detected by plotting g( T )  against T 
for different linear system sizes L at a given concentration. Suppose we follow the 
behaviour with decreasing temperature at a given concentration. Just as two such curves 
intersect at the PM- FM transition, see the discussion after equation (12) above, they 
should also intersect at the re-entrant FM- PM (or sG,  if it exists) transition. Between 
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Figure 7. A representative plot of the renor- 
malised coupling constant g against temperature 
for different linear sizes of the diluted second- 
neighbour model. The common intersection of 
thecurvesisused to locate the critical temperature 
T,. The error bars are smaller than the plotted 
symbols. J 2  = -0.1, p = 0.8. 

P 
Figure 6. Transfer matrix phase diagram of the 
same model as in figure 3. The transition tem- 
perature is plotted against the fraction of the anti- 
ferromagnetic bonds for different values of a,  the 
antiferromagnetic bond strength. 

these two critical temperatures g( T ,  L2)  would have a higher value than g( T ,  L ,) for 
L2 > L 1. This behaviour is independent of whether the re-entrant phase is paramagnetic 
or spin glass, it signals only the disappearance of the long-range ferromagnetic order. To 
save computer time we first bracketed the transition temperature by studying smaller 
system sizes, and then zeroed in by computing T, from the largest sizes (10 x 10 and 
12 x 12) in the bracketed region. 

Figure 6 shows the phase diagram for the first-neighbour random bond model using 
the distribution of equation (2b).  We plot the ferromagnetic transition temperature as 
a function of the fraction of the ferromagnetic bondsp for different values of the strength 
of the antiferromagnetic bonds a. Clearly we find no re-entrance in this model. We also 
observe a marked dependence of pEM ( T  = 0) on a ,  in agreement with the above results 
from Migdal-Kadanoff renormalisation. We have also studied this model for other 
values of a ,  in addition to those in figure 6, and found qualitatively the same behaviour 
in all cases. 

Next we discuss the two-dimensional model for Eu,Srl - x S ,  described by equation 
(2c). The Migdal-Kadanoff method is limited to nearest-neighbour interactions and so 
cannot be applied here, but, as discussed in § 3.2 above, the transfer matrix approach 
can be used. For x = 1.0 (no dilution) this system has a ferromagnetic ground state for 
J 2  = 0 and a layered antiferromagnetic ground state for J 2  = - J i /2 .  For -J1/2 s J 2  < 0 
and small enough dilution there is still ferromagnetic order. As described above, we 
estimate T, from the intersection of curves for g ,  and figure 7 shows some typical data. 
Figure 8 plots the ferromagnetic critical temperature as a function of dilution, 1 - x, for 
different ratios of the first and second neighbour interaction. In all cases, there is a 
concentration range where ferromagnetic order develops upon cooling. However, once 
developed, this long range order is never lost on further lowering the temperature. 
Again, we find that pFM ( T  = 0) depends smoothly on the ratio of the interactions R = 
J,/J,. An additional test for re-entrance is to look if m2 decreases with decreasing 
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Figure 9. A plot of the second moment of the 
magnetisation against temperature, for two dif- 
ferent linear sizes of the same model as in figure 
7.  The monotonic behaviour of the curves pro- 
vides an additional indication of the lack of re- 
entrance. J z  = - 0 . 1 , ~  = 0.4. 

temperature. We found that this never occurred to a significant extent and show some 
representative data in figure 9. 

Although not motivated by any real system, we also did some calculations on another 
second-neighbour model on the square lattice. The first-neighbour interactions were 
random and had the same distribution as in equation (2b) ,  i.e. amixture of ferromagnetic 
and antiferromagnetic bonds of smaller strength, while the second-neighbour couplings 
were non-random and antiferromagnetic but smaller in magnitude than any one of 
the first-neighbour interactions. The effect of the antiferromagnetic second-neighbour 
interactions clearly decreases the ferromagnetic transition temperature for all values of 
p ,  and reduces the concentration range where long range ferromagnetic order occurs. 
We found, however, a phase diagram which is qualitatively similar to that of the other 
models above. In particular there is no re-entrance. For this reason we do not include 
any data on this model. 

5. Discussion 

Our results suggest that re-entrance is not a general characteristic of disordered systems 
with competing interactions, even if the competition is on different length scales, since 
we find no re-entrance in the Ising systems studied. The critical fraction/concentration 
below which no ferromagnetic order develops was found to depend continuously on the 
ratio of interaction strengths. We now discuss some recent papers which come to different 
conclusions. 

Wolff and Zittartz have argued (Wolff and Zittartz 1985,1986) that re-entrance is a 
general feature of disordered models with competing interactions. Their model of Ising 
spins is described by the Hamiltonian in equation (1) and contains only first-neighbour 
interactions, drawn from the distribution of equation (2b). They argue that the free 
energy of the system is a function of p ,  tanh J and tanh aJ only. The phase transition is 



926 

2.5 

2.0 

1.5 

T, 

1.0 

0.5 

0 

J D Reger and A P Young 

1.0 0.9 0 8 0.7 0.6 0.5 

P 

Figure 10. Phase diagram as in figure 3, but in the 
annealed approximation. The transition tem- 
perature between the ferromagnetic and para- 
magnetic phases is plotted against the fraction 
of the antiferromagnetic bonds for. from left to 
right. a = 1 .O,  0.5,0.3,0.1.0.01 andO.O, whereais 
the value of the antiferromagnetic bond strength. 

therefore determined from some relation between these quantities, i.e. 

f (tanh(J/T) > tanh(aJ/T) > PI I T= T,(a.p) = 0. (14) 
Assuming that f i s  an analytic function of its arguments, Wolff and Zittartz argue that 
the critical fraction,p where T, = 0 is independent of a since, at T = 0, one has tanh J = 
- tanh uJ = 1 for all values of -1 G a < 0. For a = 0 the bond percolation problem is 
recovered, and one has a distinct percolation threshold po .  Since there is a continuous 
dependence of T, on a at T > 0, it follows that, for a small and negative, the phase 
boundary will closely follow that of the percolation problem until very low temperatures 
where it has to bend back to the fractionp, of the +Jmodel,  thereby giving a re-entrant 
phase boundary. 

We believe that this argument is incorrect because the assumption of an analytic 
function f in equation (14) appears to be true only when there is no frustration. The 
crucial element of the argument, the existence of the unique critical fractionp resembles 
very much the annealed approximation (cf figure 10) which does not treat frustration 
properly either. In fact, it has been shown that improving the annealed approximation, 
by including frustration to a certain extent, introduces more and more critical fraction 
valuesp2,p3, - . (Georgesetall986, Georges andLe Doussal 1987), and that ultimately 
all rational values betweenPo andpl will occur. Similar results have been obtained within 
the framework of an effective-field theory, which finds three critical fractions in the 
parameter range - 1 S a S 0 (Sarmento et a1 1987). 

Other arguments can be given that the function f is non-analytic as T-+ 0. For 
example, the free energy, when expanded in powers of the hyperbolic tangents, is 
certainly singular as these tend to plus or minus unity, otherwise the ground-state energy 
would be incorrectly given as that of the corresponding unfrustrated system. In addition, 
the Migdal-Kadanoff recursion can be written in terms of hyperbolic tangents, as in 
equation (3), so one might naively expect that the new distribution would be independent 
of a at zero temperature. This is not so, however, because the recursion relation is 
singular in this limit, and the interactions are actually given in equation (4). 

Several calculations have been performed which find re-entrance using a Bethe- 
Peierls type approximations (Katsura and Matsuno 1983, Benayad et a1 1987). This 
approach, like the annealed approximation and the Wolff-Zittartz argument, does not 
treat frustration adequately because there are no closed loops on the Bethe lattice. 
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Indeed, re-entrance appears in the same way in these treatments, namely the critical 
concentration at zero temperature is found to be constant for a range of parameters in 
the model. This result is unphysical and disagrees with the results of our transfer matrix 
calculations. 

6. Conclusions 

We have presented results of calculations using the numerical transfer matrix technique 
and the Migdal-Kadanoff renormalisation group scheme applied to the two-dimensional 
nearest-neighbour random bond and next-nearest-neighbour random site k i n g  models. 
The Migdal-Kadanoff calculations were restricted to the nearest-neighbour model, but 
the technique is sufficiently simple that we were able to investigate the three-dimensional 
case as well. We searchedfor re-entrance phenomena in different fraction/concentration 
ranges of the impurity bonds/sites. In contrast to numerous claims in the recent litera- 
ture, we have found that there is no re-entrance in these models or, at best, it occurs 
over a very narrow range of parameters. 

Re-entrance is widely observed in experiments, but most experimental systems are 
Heisenberg-like rather than Ising-like. Our results do agree with experiments on the 
only Ising system which has been carefully studied. where long-range order does not 
disappear as the temperature is lowered (Wong et a1 198Sa, b, 1987). Our results are for 
short-range models and so do not by themselves rule out the possibility, which is perhaps 
suggested by the work of Viana and Bray (1985), that long-range forces may give rise to 
re-entrance in Ising systems. The results of Wong et a1 (198Sa. b. 1987) make this 
unlikely, however. 

It seems possible then that some feature of Heisenberg systems is responsible for re- 
entrance. We can think of two possibilities: the first is that re-entrance occurs for an 
isotropic Heisenberg spin glass due to the not yet understood behaviour of the transverse 
fluctuations. The second is that one needs a coupling between the longitudinal and 
transverse degrees of freedom, which can arise, for example, from dipole-dipole inter- 
actions. We take the results of Borgermann et a1 (1977), which show no re-entrant 
behaviour in Eu,Srl-,Te, a Heisenberg antiferromagnet, as a suggestion that dipole- 
dipole interactions may indeed play an important role in re-entrance. Their effect is 
expected to be greater on ferromagnetic systems than on antiferromagnetic ones because 
the Fourier transform of the interaction is singular at k = 0, so this may explain the lack 
of re-entrance in Heisenberg antiferromagnets in contrast to Heisenberg ferromagnets. 

Although our results have been negative so far, we feel they are valuable because it 
is important to understand what features of the random models do or do not give re- 
entrant behaviour. From our results, we believe that disorder and competition are not 
enough to obtain re-entrant behaviour, which is therefore not a general characteristic of 
all spin-glass systems. The origin of observed re-entrant behaviour in spin glasses is 
therefore still unclear. 
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